Skip to Content
CSE5313CSE5313 Coding and information theory for data science (Recitation 10)

CSE5313 Coding and information theory for data science (Recitation 10)

Question 2

Let CC be a Reed-Solomon code generated by

G=[111α1α2αnα12α22αn2α1k1α2k1αnk1]G=\begin{bmatrix} 1 & 1 & \cdots & 1\\ \alpha_1 & \alpha_2 & \cdots & \alpha_n\\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2\\ \vdots & \vdots & \cdots & \vdots\\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_n^{k-1} \end{bmatrix}

prove that there exists v1,v2,,vnFq{0}v_1,v_2,\ldots,v_n\in \mathbb{F}_q\setminus \{0\} such that the parity check matrix is

H=[111α1α2αnα12α22αn2α1k1α2k1αnk1][v1000v2000vn]H=\begin{bmatrix} 1 & 1 & \cdots & 1\\ \alpha_1 & \alpha_2 & \cdots & \alpha_n\\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2\\ \vdots & \vdots & \cdots & \vdots\\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_n^{k-1} \end{bmatrix}\begin{bmatrix} v_1 & 0 & \cdots & 0\\ 0 & v_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & v_n \end{bmatrix}

Some lemmas for linear codes

First we introduce the following lemmas for linear codes

Let GG and HH be the generator and parity-check matrices of (any) linear code

Lemma 1

HG=0H G^\top = 0

Proof

By definition of generator matrix and parity-check matrix, foralleiHforall e_i\in H, eiG=0e_iG^\top=0.

So HG=0H G^\top = 0.

Lemma 2

Any matrix MFq(nk)×nM\in \mathbb{F}_q^{(n-k)\times n} such that rank(M)=nk\operatorname{rank}(M) = n - k and MG=0M G^\top = 0 is a parity-check matrix for CC (i.e. C=kerMC = \ker M).

Proof

It is sufficient to show that the two statements

  1. cC,c=uG,uFk\forall c\in C, c=uG, u\in \mathbb{F}^k

Mc=M(uG)=M(Gu)=0M c^\top = M(uG)^\top = M(G^\top u^\top) = 0 since MG=0M G^\top = 0.

Thus CkerMC \subseteq \ker M.

  1. dim(kerM)+rank(M)=n\dim (\ker M) +\operatorname{rank}(M) = n

We proceed by showing that dim(kerM)=dim(C)\dim (\ker M) =\dim (C).

Suppose CC does not span kerM\ker M. Let u1,...,uku_1,...,u_k be a basis for CC. Then there exists vkerMCv\in \ker M\setminus C.

By linear independence, if we have scalar a1,...,aka_1,...,a_k and bb such that a1u1+...+akuk+bv=0a_1u_1+...+a_ku_k+bv=0, then a1=...=ak=b=0a_1=...=a_k=b=0. So v=a1u1+...+akukv=a_1u_1+...+a_ku_k for some a1,...,aka_1,...,a_k.

By definition of linear code, we have vCv\in C, contradicting the assumption.

Solution

We proceed by applying the lemma 2.

  1. rank(H)=nk\operatorname{rank}(H) = n - k since HH is a Vandermonde matrix times a diagonal matrix with no zero entries, so HH is invertible.

  2. HG=0H G^\top = 0.

note that \forall row ii of HH, 0ink10\leq i\leq n-k-1, \forall column jj of GG^\top, 0jk10\leq j\leq k-1

So

HG=[111α1α2αnα12α22αn2α1k1α2k1αnk1][v1000v2000vn][1α1α12α1k11α2α22α2k11αnαn2αnk1]=[111α1α2αnα12α22αn2α1k1α2k1αnk1][v1v2vn]=l=1nαlrvl=0\begin{aligned} H G^\top &= \begin{bmatrix} 1 & 1 & \cdots & 1\\ \alpha_1 & \alpha_2 & \cdots & \alpha_n\\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2\\ \vdots & \vdots & \cdots & \vdots\\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_n^{k-1} \end{bmatrix}\begin{bmatrix} v_1 & 0 & \cdots & 0\\ 0 & v_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & v_n \end{bmatrix}\begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{k-1}\\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{k-1}\\ \vdots & \vdots & \vdots & \cdots & \vdots\\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{k-1} \end{bmatrix}\\ &= \begin{bmatrix} 1 & 1 & \cdots & 1\\ \alpha_1 & \alpha_2 & \cdots & \alpha_n\\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2\\ \vdots & \vdots & \cdots & \vdots\\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_n^{k-1} \end{bmatrix} \begin{bmatrix} v_1\\ v_2\\ \vdots\\ v_n \end{bmatrix}\\ &=\sum_{l=1}^n\alpha_l^{r}v_l=0 \end{aligned}

Question 3

Show that in an MDS code [n,k,d]Fq[n,k,d]_{\mathbb{F}_q}, d=nk+1d=n-k+1, every kk entries determine the remaining nkn-k entries of GG.

That is, every k×kk\times k submatrix of GG is invertible.

Proof

Let GG be the generator matrix, and GG' be any k×kk\times k submatrix of GG.

G=[GFk×kGFk×(nk)]G=\begin{bmatrix} G'\in \mathbb{F}^{k\times k}|G''\in \mathbb{F}^{k\times (n-k)} \end{bmatrix}

We proceed by contradiction, suppose GG' is not invertible.

Then there exists m,mFqkm',m''\in \mathbb{F}_q^k such that mmm'\neq m'' but mG=mGm'G'=m''G'.

Note that mG=[mGmG]m'G=[m'G'|m'G''] and mG=[mGmG]m''G=[m''G'|m''G''].

So there are only nkn-k entries of mGm'G and mGm''G are different, so dnkd\leq n-k.

That violate with the assumption that d=nk+1d=n-k+1.

Reed-Muller code

Definition of Reed-Muller code (binary case)

RM(r,m)={(f(α1),,f(α2m))αiF2m,degfr}RM(r,m)=\left\{(f(\alpha_1),\ldots,f(\alpha_2^m))|\alpha_i\in \mathbb{F}_2^m,\deg f\leq r\right\}

Length of RM(r,m)RM(r,m) is 2m2^m.

Example of Reed-Muller code

Let r=2r=2, m=3m=3.

α1=(0,0,0)\alpha_1=(0,0,0), α2=(0,0,1)\alpha_2=(0,0,1), α3=(0,1,0)\alpha_3=(0,1,0), α4=(0,1,1)\alpha_4=(0,1,1), α5=(1,0,0)\alpha_5=(1,0,0), α6=(1,0,1)\alpha_6=(1,0,1), α7=(1,1,0)\alpha_7=(1,1,0), α8=(1,1,1)\alpha_8=(1,1,1).

p(x)deg2={1,x1,x2,x3,x1x2,x1x3,x2x3}p(x)\deg\leq 2=\{1,x_1,x_2,x_3,x_1x_2,x_1x_3,x_2x_3\}.

So p(x)=1+x1+x2+x3+x1x2+x1x3+x2x3p(x)=1+x_1+x_2+x_3+x_1x_2+x_1x_3+x_2x_3.

The generator matrix is defined by

G=[1x1x2x3x1x2x1x3x2x3][11111111000011110011001101010101000000110000010100010001]G=\begin{bmatrix}1\\x_1\\x_2\\x_3\\x_1x_2\\x_1x_3\\x_2x_3\end{bmatrix}\begin{bmatrix} 1& 1&1&1&1&1&1&1\\ 0& 0&0&0&1&1&1&1\\ 0& 0&1&1&0&0&1&1\\ 0& 1&0&1&0&1&0&1\\ 0& 0&0&0&0&0&1&1\\ 0& 0&0&0&0&1&0&1\\ 0& 0&0&1&0&0&0&1\\ \end{bmatrix}

So dimRM(r,m)=i=0r(mi)\dim RM(r,m)=\sum_{i=0}^{r}\binom{m}{i}.

Question 4

RM(m1,m)RM(m-1,m) is the parity check code.

Proof

By previous lemma, it is sufficient to show that dim(RM(m1,m))=n1\dim (RM(m-1,m))=n-1 and RM(m1,m) parity codeRM(m-1,m)\subseteq \text{ parity code}.

For the first property,

dim(RM(m1,m))=i=0m1(mi)=i=0m(mi)(mm)=2m1=n1\dim (RM(m-1,m))=\sum_{i=0}^{m-1}\binom{m}{i}=\sum_{i=0}^{m}\binom{m}{i}-\binom{m}{m}=2^m-1=n-1

For the second property,

recall that c=(c1,c2,,cn)c=(c_1,c_2,\ldots,c_n)\in parity if i=1nci=0\sum_{i=1}^n c_i=0.

So we need to show that i=12mf(αi)=0\sum_{i=1}^{2^m}f(\alpha_i)=0 for every ff with degfm1\deg f\leq m-1.

Note that fRM(m1,m)\forall f\in RM(m-1,m), we can write f(x1,x2,,xm)=S[m],Sm1fSxSf(x_1,x_2,\ldots,x_m)=\sum_{S\subseteq [m],|S|\leq m-1}f_Sx_S

So i=12mf(αi)=S[m],Sm1fSi=12mxS(αi)=0\sum_{i=1}^{2^m}f(\alpha_i)=\sum_{S\subseteq [m],|S|\leq m-1}f_S\sum_{i=1}^{2^m}x_S(\alpha_i)=0.

We denote J(s)=i=12mxS(αi)J(s)=\sum_{i=1}^{2^m}x_S(\alpha_i).

Note that J(S)=\begin{cases} 1 & \text{if number of 1 in S is odd} 0 & \text{otherwise} \end{cases}

And number of 1 in SS is 2mS2^{m-|S|} which is even.

So J(S)=0J(S)=0 for all S[m],Sm1S\subseteq [m],|S|\leq m-1.

Last updated on