Skip to Content
CSE442TIntroduction to Cryptography (Lecture 4)

CSE442T Introduction to Cryptography (Lecture 4)

Recap

Negligible function ϵ(n)\epsilon(n) if c>0,N\forall c>0,\exist N such that n>Nn>N, ϵ(n)<1nc\epsilon (n)<\frac{1}{n^c}

Example:

ϵ(n)=2n,ϵ(n)=1nlog(logn)\epsilon(n)=2^{-n},\epsilon(n)=\frac{1}{n^{\log (\log n)}}

Chapter 2: Computational Hardness

One-way function

Strong One-Way Function

  1. \exists a P.P.T. that computes f(x),x{0,1}nf(x),\forall x\in\{0,1\}^n
  2. A\forall \mathcal{A} adversaries, ϵ(n),n\exists \epsilon(n),\forall n.
P[x{0,1}n;y=f(x):f(A(y,1n))=y]<ϵ(n)P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]<\epsilon(n)

That is, the probability of success guessing should decreasing (exponentially) as encrypted message increase (linearly)…

To negate statement 2:

P[x{0,1}n;y=f(x):f(A(y,1n))=y]=μ(n)P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]=\mu(n)

is a negligible function.

Negation:

A\exists \mathcal{A}, P[x{0,1}n;y=f(x):f(A(y,1n))=y]=μ(n)P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]=\mu(n) is not a negligible function.

That is, c>0,Nn>Nϵ(n)>1nc\exists c>0,\forall N \exists n>N \epsilon(n)>\frac{1}{n^c}

μ(n)>1nc\mu(n)>\frac{1}{n^c} for infinitely many nn. or infinitely often.

Keep in mind: P[success]=1ncP[success]=\frac{1}{n^c}, it can try O(nc)O(n^c) times and have a good chance of succeeding at least once.

Definition 28.4 (Weak one-way function)

f:{0,1}n{0,1}f:\{0,1\}^n\to \{0,1\}^*

  1. \exists a P.P.T. that computes f(x),x{0,1}nf(x),\forall x\in\{0,1\}^n
  2. A\forall \mathcal{A} adversaries, ϵ(n),n\exists \epsilon(n),\forall n.
P[x{0,1}n;y=f(x):f(A(y,1n))=y]<11p(n)P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]<1-\frac{1}{p(n)}

The probability of success should not be too close to 1

Probability

Useful bound 0<p<10<p<1

1p<ep1-p<e^{-p}

(most useful when pp is small)

For an experiment has probability pp of failure and 1p1-p of success.

We run experiment nn times independently.

P[success all n times]=(1p)n<(ep)n=enpP[\text{success all n times}]=(1-p)^n<(e^{-p})^n=e^{-np}

Theorem 35.1 (Strong one-way function from weak one-way function)

If there exists a weak one-way function, there there exists a strong one-way function

In particular, if f:{0,1}n{0,1}f:\{0,1\}^n\to \{0,1\}^* is weak one-way function.

\exists polynomial q(n)q(n) such that

g(x):{0,1}nq(n){0,1}g(x):\{0,1\}^{nq(n)}\to \{0,1\}^*

and for every nn bits xix_i

g(x1,x2,..,xq(n))=(f(x1),f(x2),...,f(xq(n)))g(x_1,x_2,..,x_{q(n)})=(f(x_1),f(x_2),...,f(x_{q(n)}))

is a strong one-way function.

Proof

  1. Since P.P.T.\exist P.P.T. that computes f(x),xf(x),\forall x we use this q(n)q(n) polynomial times to compute gg.

  2. (Idea) aa has to succeed in inverting ff all q(n)q(n) times. Since xx is a weak one-way, \exists polynomial p(n)p(n). q,P[q\forall q, P[q inverts f]<11p(n)f]<1-\frac{1}{p(n)} (Here we use << since we can always find a polynomial that works)

    Let q(n)=np(n)q(n)=np(n).

    Then P[aP[a inverting g]P[ag]\sim P[a inverts ff all q(n)]q(n)] times. <(11p(n))q(n)=(11p(n))np(n)<(e1p(n))np(n)=en<(1-\frac{1}{p(n)})^{q(n)}=(1-\frac{1}{p(n)})^{np(n)}<(e^{-\frac{1}{p(n)}})^{np(n)}=e^{-n} which is negligible function.

we can always force the adversary to invert the weak one-way function for polynomial time to reach the property of strong one-way function

Example: (11n2)n3<en(1-\frac{1}{n^2})^{n^3}<e^{-n}

Some candidates of one-way function

Multiplication

Mult(m1,m2)={1,m1=1m2=1m1m2Mult(m_1,m_2)=\begin{cases} 1,m_1=1 | m_2=1\\ m_1\cdot m_2 \end{cases}

But we don’t want trivial answers like (1,1000000007)

Idea: Our “secret” is 373 and 481, Eve can see the product 179413.

Not strong one-way for all integer inputs because there are trivial answer for 34\frac{3}{4} of all outputs. Mult(2,y/2)

Factoring Assumption:

The only way to efficiently factorizing the product of prime is to iterate all the primes.

In other words:

aϵ(n)\forall a\exists \epsilon(n) such that n\forall n. P[p1nj]P[p_1\gets \prod n_j]

We’ll show this is a weak one-way function under the Factoring Assumption.

a,ϵ(n)\forall a,\exists \epsilon(n) such that n\forall n,

P[p1Πn;p2Πn;N=p1p2:a(n)={p1,p2}]<ϵ(n)P[p_1\gets \Pi_n;p_2\gets \Pi_n;N=p_1\cdot p_2:a(n)=\{p_1,p_2\}]<\epsilon(n)

where Πn={p all primes p<2n}\Pi_n=\{p\text{ all primes }p<2^n\}

Last updated on