Skip to Content
CSE442TIntroduction to Cryptography (Lecture 2)

CSE442T Introduction to Cryptography (Lecture 2)

Probability review

Sample space S=set of outcomes (possible results of experiments)S=\text{set of outcomes (possible results of experiments)}

Event ASA\subseteq S

P[A]=P[P[A]=P[ outcome xA]x\in A]

P[{x}]=P[x]P[\{x\}]=P[x]

Conditional probability:

P[AB]=P[AB]P[B]P[A|B]={P[A\cap B]\over P[B]}

Assuming BB is the known information. Moreover, P[B]>0P[B]>0

Probability that AA and BB occurring: P[AB]=P[AB]P[B]P[A\cap B]=P[A|B]\cdot P[B]

P[BA]=P[BA]P[A]P[B\cap A]=P[B|A]\cdot P[A]

So P[AB]=P[BA]P[A]P[B]P[A|B]={P[B|A]\cdot P[A]\over P[B]} (Bayes Theorem)

There is always a chance that random guess would be the password… Although really, really, low…

Law of total probability

Let S=i=1nBiS=\bigcup_{i=1}^n B_i. and BiB_i are disjoint events.

A=i=1nABiA=\bigcup_{i=1}^n A\cap B_i (ABiA\cap B_i are all disjoint)

P[A]=i=1nP[ABi]P[Bi]P[A]=\sum^n_{i=1} P[A|B_i]\cdot P[B_i]

Chapter 1: Introduction

Defining security

Perfect Secrecy (Shannon Secrecy)

kGen()k\gets Gen() kKk\in K

cEnck(m)c\gets Enc_k(m) or we can also write as cEnc(k,m)c\gets Enc(k,m) for mMm\in M

And the decryption procedure:

mDeck(c)m'\gets Dec_k(c'), mm' might be null.

P[kGen():Deck(Enck(m))=m]=1P[k\gets Gen(): Dec_k(Enc_k(m))=m]=1

Definition 11.1 (Shannon Secrecy)

Distribution DD over the message space MM

P[kGen;mD:m=mcEnck(m)]=P[mD:m=m]P[k\gets Gen;m\gets D: m=m'|c\gets Enc_k(m)]=P[m\gets D: m=m']

Basically, we cannot gain any information from the encoded message.

Code shall not contain any information changing the distribution of expectation of message after viewing the code.

NO INFO GAINED

Definition 11.2 (Perfect Secrecy)

For any 2 messages, say m1,m2Mm_1,m_2\in M and for any possible cipher cc,

P[kGen:cEnck(m1)]=P[kGen():cEnck(m2)]P[k\gets Gen:c\gets Enc_k(m_1)]=P[k\gets Gen():c\gets Enc_k(m_2)]

For a fixed cc, any message (have a equal probability) could be encrypted to that…

Theorem 12.3

Shannon secrecy is equivalent to perfect secrecy.

Proof:

If a crypto-system satisfy perfect secrecy, then it also satisfy Shannon secrecy.

Let (Gen,Enc,Dec)(Gen,Enc,Dec) be a perfectly secret crypto-system with KK and MM.

Let DD be any distribution over messages.

Let mMm'\in M.

=Pk[cEnck(m)]P[m=m]Pk,m[cEnck(m)]={P_k[c\gets Enc_k(m')]\cdot P[m=m']\over P_{k,m}[c\gets Enc_k(m)]}\\ P[kGen();mD:m=mcEnck(m)]=Pk,m[cEnck(m)m=m]P[m=m]Pk,m[cEnck(m)]Pk,m[cEnck(m)]=i=1nPk,m[cEnck(m)m=mi]P[m=mi]=i=1nPK,mi[cEnck(mi)]P[m=mi]P[k\gets Gen();m\gets D:m=m'|c\gets Enc_k(m)]={P_{k,m}[c\gets Enc_k(m)\vert m=m']\cdot P[m=m']\over P_{k,m}[c\gets Enc_k(m)]}\\ P_{k,m}[c\gets Enc_k(m)]=\sum^n_{i=1}P_{k,m}[c\gets Enc_k(m)|m=m_i]\cdot P[m=m_i]\\ =\sum^n_{i=1}P_{K,m_i}[c\gets Enc_k(m_i)]\cdot P[m=m_i]

and Pk,mi[cEnck(mi)]P_{k,m_i}[c\gets Enc_k(m_i)] is constant due to perfect secrecy

i=1nPk,mi[cEnck(mi)]P[m=mi]=i=1nP[m=mi]=1\sum^n_{i=1}P_{k,m_i}[c\gets Enc_k(m_i)]\cdot P[m=m_i]=\sum^n_{i=1} P[m=m_i]=1

Last updated on